If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+(X^2/16)=36
We move all terms to the left:
X^2+(X^2/16)-(36)=0
We get rid of parentheses
X^2+X^2/16-36=0
We multiply all the terms by the denominator
X^2+X^2*16-36*16=0
We add all the numbers together, and all the variables
X^2+X^2*16-576=0
Wy multiply elements
X^2+16X^2-576=0
We add all the numbers together, and all the variables
17X^2-576=0
a = 17; b = 0; c = -576;
Δ = b2-4ac
Δ = 02-4·17·(-576)
Δ = 39168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39168}=\sqrt{2304*17}=\sqrt{2304}*\sqrt{17}=48\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{17}}{2*17}=\frac{0-48\sqrt{17}}{34} =-\frac{48\sqrt{17}}{34} =-\frac{24\sqrt{17}}{17} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{17}}{2*17}=\frac{0+48\sqrt{17}}{34} =\frac{48\sqrt{17}}{34} =\frac{24\sqrt{17}}{17} $
| x*1+4=40 | | X/5-5=o | | 3(x=+5)=39 | | 10/9=3/q | | -15=1.5h | | 2x^2=9x-81 | | 2m+3=-22 | | 13f-7=10 | | x=4-2x1 | | x+0.01x=141 | | 10.35+2.3h=9.2 | | 134=p | | x+0.1x=141 | | -5n+6=-7(5n-6) | | 8x-5=11x | | X(82.8/2.3x)=82.8 | | 477-127=n | | 477=n | | 44=4w-8 | | 3/4(x-12=3 | | x+7+x+7.5-12+x=63 | | 9x=17000 | | x^2-3^2=9 | | 2x+(3x+5)=90. | | 4×y=256 | | 15-4x=10×+45 | | E=I(R-r);r | | 180=35+(x+35)+(x-50) | | 2x+(3x-5)+90=180 | | -4x+15=2x-3 | | 2x-60+x=90 | | 2x+6=6+2 |